vol. 40 861-864 (1967) BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN

Structure of Dimethylthallium Compounds Soluble in Non-polar Solvents

Hideo Kurosawa, Kiyoshi Yasuda and Rokuro Okawara

Department of Applied Chemistry, Osaka University, Higashinoda, Miyakojima, Osaka

(Received October 1, 1966)

Several dimethylthallium derivatives were studied by means of a study of their IR and NMR spectra and by measurements of their physical properties. These new compounds, (CH₃)₂. TISC₆H₅, (CH₃)₂TIOC₆H₄Cl-0, and (CH₃)₂TI[B(C₆H₅)₄], are described. By correlation with earlier reports, it is possible to classify dimethylthallium derivatives into two groups according to the nature of the hybridization of the Tl-bonding orbitals. The experimental results can be interpreted in a straightforward and consistent manner.

It is well known that most dialkylthallium derivatives, R2TIY, are salt-like, with stable [R-Tl-R]+ ions both in the solid state1) and in an aqueous solution.2) While we have been making our study,3) Shier and Drago have discussed the structure of some dimethylthallium compounds in several polar solvents on the basis of a study of their NMR and infrared spectra.4) Their results are quite similar to ours. The present paper will describe further results concerning the structure of dimethylthallium derivatives, including three new compounds, mainly in non-polar solvents.

Experimental

Dimethylthallium Chloride was prepared by the Grignard method5) and recrystallized from pyridine.

Dimethylthallium Nitrate and Dimethylthallium Perchlorate were prepared by double decomposition between (CH₃)₂TlCl and the appropriate silver salts.

Dimethylthallium Tetraphenylborate was prepared from (CH₃)₂TlOH and Na[B(C₆H₅)₄] in an aqueous solution. These three products were purified by recrystallization from acetone.

Dimethylthallium Thiophenoxide. Phenoxide, o-Chlorophenoxide and Salicylaldehydate were all prepared by the same method; [(CH₃)₂Tl]₂CO₃ and a slight excess of the appropriate XH (X=SC₆H₅, OC₆H₅, OC₆H₄Cl-o and OC₆H₄CHO-o) were dissolved in an ethanol-benzene mixture and heated to boiling. The solutions were then concentrated; the desired compounds crystallized on cooling (yield, (CH₃)₂- $TISC_6H_5$, 70%; $(CH_3)_2TIOC_6H_5$, 50%; $(CH_3)_2TIOC_6$ - H_4Cl-o , 70%; $(CH_3)_2TlOC_6H_4CHO-o$, 50%). $(CH_3)_2-$ TISC₆H₅ and (CH₃)₂TIOC₆H₄CHO-0 were recrystallized from hot benzene. (CH₃)₂TlOC₆H₅ and (CH₃)₂-TIOC₆H₄Cl-0 were recrystallized from hot cyclohexane. The last two are sublimable under reduced pressure at about 100°C.

Dimethylthallium Thiomethoxide was prepared

¹⁾ H. M. Powell and D. M. Crowfoot, Z. Krist.,

<sup>87, 370 (1934).
2)</sup> P. L. Goggin and L. A. Woodward, Trans. Faraday Soc., 56, 591 (1960).
3) H. Kurosawa, K. Yasuda and R. Okawara,

<sup>Inorg. Nucl. Chem. Letters, 1, 131 (1965).
4) G. D. Shier and R. S. Drago, J. Organometal. Chem., 5, 330 (1966).</sup>

⁵⁾ R. J. Meyer and A. Bertheim, Ber., 37, 2051 (1904).

by the reported method,⁶⁾ and purified by sublimation under reduced pressure at 150°C. The properties and analytical data of these compounds are summarized in Table 1.

The molecular weights of $(CH_3)_2TISC_6H_5$, measured in benzene using a vapor pressure osmometer at 25°C, were 730, 695, 705 and 715 at concentrations of 0.234, 0.290, 0.410, and 0.453 w(sample)/W(solvent) \times 100 respectively. Calcd for $[(CH_3)_2TISC_6H_5]_2$, mol wt, 687. The molecular weights of $(CH_3)_2TIOC_6H_5$, determined ebulliometrically in benzene, were 590,

Table 1. Properties of dimethylthallium derivatives: (CH₃)₂TlY

		-,-		
Compound	Mp, °C [reported]	%C Found (Calcd)	%H Found (Calcd)	%Tl Found (Calcd)
Y = Cl	280(dec.)	9.04	2.21	75.63
NO_3	>300	(8.90) 8.51	2.05	(75.72) 68.82
ClO ₄	105(explod	, ,	(2.04)	(68.94) 61.51
$\mathrm{B}(\mathrm{C}_6\mathrm{H}_5)_4$	215(dec.)	56.27	4.61	(61.22)
SC_6H_5	182	(56.40) 28.03	3.28	59.17
SCH_3	207	(27.96)	(3.23)	(59.48) 72.77
OC_6H_5	[207—208] ⁶	29.58	3.32	(72.64) 62.36
OC ₆ H ₄ Cl-o	[202] ⁴⁾ 179	(29.34) 26.26	(3.39) 2.52	(62.39) 56.24
OC ₆ H ₄ CHO	-o 200(dec.)	(26.54)	(2.78)	(56.46) 57.96
	[200]7			(57.48)

586, 610, 577 and 596 at concentrations of 1.30, 1.83, 1.98, 2.36, and 2.75 w/W \times 100 respectively. Calcd for [(CH₃)₂TlOC₆H₅]₂, mol wt, 654. The molecular weights of (CH₃)₂TlOC₆H₄Cl- σ , measured cryoscopically in benzene, were 594, 650, 615 and 622 at concentrations of 2.20, 3.26, 3.30, and 4.25 w/W \times 100 respectively. Calcd for [(CH₃)₂TlOC₆H₄Cl- σ]₂, mol wt, 724.

Distribution of (CH₃)₂TIOC₆H₅ and (CH₃)₂-TIOC₆H₄Cl-o between Benzene and Water. The experiments were carried out as follows: A benzene solution of (CH₃)₂TIOC₆H₅ (or (CH₃)₂TIOC₆H₄Cl-o) (1 g solute/2.25 mol solvent) was vigorously shaken with 40 g of water (2.25 mol) for about 10 min. After the mixture had then been allowed to stand, the water layer was separated and evaporated. The residue was identified as (CH₃)₂TIOC₆H₅ (or (CH₃)₂TIOC₆H₄Cl-o) by its melting point and its IR spectra. In the case of (CH₃)₂TIOC₆H₅, the water layer contained 0.796 g of solute; the balance of about 0.2 g was recovered from the benzene solution. For (CH₃)₂TIOC₆H₄Cl-o, the recovery of solute was 0.57 g from water and about 0.4 g from benzene.

The Infrared Spectra were obtained using a Hitachi EPI-2G spectrometer equipped with gratings.

The Proton NMR Spectra were measured using a JNR-3H-60 spectrometer at 60 Mc/s and 20°, 55° and 100°C.

Results and Discussion

The results of the study of the infrared and NMR spectra of dimethylthallium compounds are listed in Tables 2 and 3 respectively.

Because of the appearance of several additional bands in the region where TlC₂ stretching vibrations were expected, it is difficult to assign these vibrations without ambiguity. Shier and Drago⁴ have assigned the bands at 552 cm⁻¹ and 507

Table 2. Relevant infrared absorption frequencies (in cm⁻¹) of dimethylthallium derivatives, (CH₃)₂TIY (Nujol mulls)

Group Co	Compound	Methyl rocking	TlC2 stretch	ning	Additional band	
	Compound	$ ho(\mathrm{CH_3})^{\mathrm{a}_{\mathrm{J}}}$	vasym	$\nu_{ m sym}$	around $\nu(\mathrm{TlC}_2)$	
A	$Y = SCH_3$	ca. 770 (s)	523 (s)	469 (m)		
	SC_6H_5	ca. 788 (s)	534 (s)	473 (m)	478 (w)	
	$\mathrm{OC_6H_5}$	793 (s)	541 (s)	478 (w)	552 (s), 505 (s)	
	OC ₆ H ₄ Cl-o	799 (s)	542 (s)	480 (w)	570 (s), 512 (m)	
	OC ₆ H ₄ CHO-6	793 (s)	538 (s)	obscured	553 (s)	
	(acac)c)	790 (s)	538 (overlapped)	482 (w)	566 (m)	
	(ox)	ca. 787 (s)b)	538 (s)	481 (w)	565 (m), 495 (s), 498 (s)	
В	$Y = NO_3$	ca. 810 (s)b)	560 (s)			
	ClO_4	ca. 825 (s)	557 (s)			
	Cl	802 (s)	550 (s)			
	$\mathrm{B}(\mathrm{C_6H_5})_4$	825 (s)b)	549 (m)			

a) Very broad.

b) Partly obscured by the absorptions due to the ligand.

c) Solution spectra in CHCl₃ and CHBr₃ (Ref. 3).

⁶⁾ G. E. Coates and R. A. Whitcombe, *J. Chem. Soc.*, **1956**, 3351.

⁷⁾ R. C. Menzies, N. V. Sidgwick, E. F. Cutcliffe and J. M. C. Fox, *ibid.*, **1928**, 1288.

TABLE 3.	Tl-H Spin-spin coupling constants ^a): $J_{\underline{\mathtt{T}}_1-\mathtt{C}\underline{\mathtt{H}}_3}$ (in cps) for $(\mathtt{CH}_3)_2\mathtt{TlY}$						
(concentrations: ca. 0.5—5 wt%)							

Group	Compound	Solvent					
		Toluene	Benzene	CCl ₄	CDCl ₃	$\mathrm{CH_{2}Cl_{2}}$	D_2O
A	$Y = SC_6H_5$	355b)					
	OC_6H_5	368c)	370°)	360c)			405*
	OC_6H_4Cl - o	373c)	368c)	365c)			407
	OC ₆ H ₄ CHO-0		382				407
	SCH ₃ d)					371 (saturated)	
	(acac)e)		381*		372*	,	411*
	(ox)e)				391		
В	NO ₃ f)						407*
	$ClO_4^{f)}$						406*

- a) The separation of $J_{203T1-CH_3}$ and $J_{205T1-CH_3}$ was not observed except as noted.
- b) Measured at 100°C.
- c) At 20°C methyl signals are broad (ca. 15 cps) possibly because of monomer-dimer exchange. At above 50°C they are of the ordinary order of width. At lower temperature the low solubility in the solvents used precluded the separation of signals due to monomer and dimer. There was no appreciable change in J on varying the concentrations and temperature.
- d) Ref. 4. e) Ref. 3. f) Ref. 8.
- * The value of $J_{205\underline{\text{T1}}-\text{CH}_3}$; $J_{203\underline{\text{T1}}-\text{CH}_3}$ is 2—4 cps less than $J_{205\underline{\text{T1}}-\text{CH}_3}$.

cm⁻¹ in the spectrum of $(CH_3)_2TIOC_6H_5$ to ν_{asym} (TIC_2) and ν_{sym} (TIC_2) respectively. However, we prefer to assign the bands at 541 cm^{-1} and 478 cm^{-1} to these vibrations respectively, because this is consistent with the spectrum of $(CH_3)_2$ - $TIOC_6H_4Cl$ -o, which would have a similar configuration as to the TIC_2 group. In a previous report³⁾ a band at 566 cm^{-1} in the solution spectrum of $(CH_3)_2TI(acac)$ was assigned to ν_{asym} (TIC_2) . However, this band seems to be too weak and to occur at too high a frequency relative to ν_{sym} (TIC_2) ; therefore, we have re-assigned the ν_{asym} (TIC_2) as is shown in Table 2.

Those compounds which are soluble in non-polar organic solvents (Group A) may be distinguished from typical ionic dimethylthallium derivatives (Group B) by the values of their methyl rocking*1 and TlC2 stretching frequencies. The Group A compounds are characterized by $\rho(\text{CH}_3) < 800 \text{ cm}^{-1}$, ν_{asym} (TlC2) $\simeq 540 \text{ cm}^{-1}$ and a weak band of ν_{sym} (TlC2); Group B, by $\rho(\text{CH}_3) > 800 \text{ cm}^{-1}$, ν_{asym} (TlC2) $\simeq 550 - 560 \text{ cm}^{-1}$, and no bands attributable to ν_{sym} (TlC2). The spectra of the Group B derivatives also show the characteristic infrared absorption bands due to free anion groups

such as NO_3^- , ClO_4^- or $[B(C_6H_5)_4]^-$.

The results of the molecular-weight determination show that $(CH_3)_2TISC_6H_5$, $(CH_3)_2TIOC_6H_5$ and $(CH_3)_2TIOC_6H_4CI-0$ are dimeric in benzene, though the last two are partially dissociated into monomers. Tetra-co-ordinated thallium similar to $[(CH_3)_2TISCH_3]_2^{6}$ would be established in these compounds through sulfur bridging or relatively weak oxygen bridging bonds, as is shown below. Judging from the $\nu(C=O)$ value of $(CH_3)_2TIOC_6H_4$ -CHO-0, which is about $30~cm^{-1}$ lower than that of $C_6H_4(OH)CHO$ -0, dimethylthallium salicylal-dehydate might have a chelate structure similar to those of $(CH_3)_2TI(acac)$ and $(CH_3)_2TI[CH_4(COC_6H_5)_2]^{4/2}$

$$H_3C$$
 T
 X
 CH_3
 CH_3
 CH_3
 $R = CH_3 \text{ or } C_6H_5)$

$$\begin{array}{ccc} H_3C & O & (Dimethylthallium\\ H_3C & Salicylaldehydate) \end{array}$$

In all of the Group A compounds, including (CH₃)₂Tl(ox), which has been shown to be chelated, ¹⁰) as a result of considerable Tl-ligand interaction the Tl-C bond is weaker, the Tl-C bond

sion, a similar error has already been pointed out (Ref. 9).
9) C. E. Feidline and R. S. Tobias, *Inorg. Chem.*, 5, 354 (1966).

¹⁰⁾ G. Faraglia, L. Roncucci and R. Barbieri, Ricerea Sci. Renc., 8, A205(1965).

⁸⁾ J. V. Hatton, J. Chem. Phys., **40**, 933 (1964).
*1 Goggin and Woodward (Ref. 2) have assigned the weak line at 569 cm⁻¹ to ρ (CH₃) in the Raman spectra of (CH₃)₂TINO₃ and (CH₃)₂TIClO₄ in a H₂O solution. However, our Raman spectra of (CH₃)₂TINO₃, both in the solid state and in H₂O, show no lines in this region. The ρ (CH₃) vibration would not be expected to occur at such low frequencies. In the case of the (CH₃)₂Pb²⁺

length is greater, and the C-Tl-C bond angle is smaller than in the Group B compounds. Thus, the ν_{asym} (TlC₂) value of the Group A compounds*2 are observed at lower frequencies than those of group B. Furthermore, the longer Tl-C bond produces greater Tl...H distances and, hence, a smaller value of the F_{T1...H} term in a simple Urey-Bradley force field. As a consequence, lower ρ(CH₃) frequencies in the Group A compounds may be expected; indeed, they have been observed.

In terms of electronic structure, the dimethylthallic cation characteristic of the Group B compounds can be described as being bonded by essentially sp hybrids. The solvent dependence of $J_{\text{T1-CH}_3}$ for the linear $[(\text{CH}_3)_2\text{Tl}]^+$ (408— 475 cps) has been discussed in terms of a dz^2 -s mixing scheme.4) On the other hand, in the Group A derivatives with a non-linear C-Tl-C configuration, the Tl-C bond would have smaller s-character than sp hybrids and, thus, a weaker Fermi contact interaction, resulting in smaller values of the

thallium-proton spin-spin coupling constants.8,11,12) This may be seen in Table 3 for the Group A compounds dissolved in non-polar solvents.

 $(CH_3)_2TlOC_6H_5$ (CH₃)₂TlOC₆H₄Cl-o (CH₃)₂TlOC₆H₄CHO-o are soluble in water, giving a strongly alkaline solution (pH 10-11). These compounds recrystallize unchanged from aqueous solutions. These facts suggest that they are dissociated in water to give the [(CH₃)₂Tl] + aquo ion and the corresponding anions. The dissociation in water was also confirmed by the NMR results: the J values of $(CH_3)_2TIOC_6H_5$, $(CH_3)_2TIOC_6H_4$ -Cl-o, and (CH₃)₂TlOC₆H₄CHO-o measured in a D₂O solution are identical with those⁸⁾ of ionic dimethylthallium compounds in a D₂O solution. The distribution experiments between equimolar benzene and water showed that about 80% of (CH₃)₂TlOC₆H₅ and 60% of (CH₃)₂TlOC₆H₄Cl-o were found in the water layer. It is likely that, in the case of these compounds, an essentially linear [C-Tl-C] + configuration is favored. This is consistent with the general features of dimethylthallium chemistry.

We wish to thank Dr. Y. Kawasaki of our laboratory for his assistance in this work and Dr. C. R. Dillard*3 for his helpful discussions.

^{*2} The infrared spectra of (CH₃)₂TlOC₆H₅ and (CH₃)₂TlOC₆H₄Cl-o measured in a benzene solution were practically identical with those in the solid state. We may, therefore, presume that there are no appreciable structural differences between the solid state and solution for any of the Group A compounds except (CH₃)₂Tl(acac) (Ref. 3).

¹¹⁾ J. P. Maher and D. F. Evans, J. Chem. Soc., 1965, 637; 1963, 5534.

¹²⁾ G. Klose, Ann. Physik., 9, 262 (1962).

^{*3} Fulbright Research Fellow at Osaka University, 1965-1966.